
A material in TSE is a data structure that describes a surface. It contains many different types of 
information such as sound, physics and rendering properties. At this early release of the TSE, most 
of the information in materials focuses on rendering. 

The TSE generates shaders from Material definitions. The shaders are compiled at runtime and 
output into the example/shaders directory. Any errors or warnings generated from compiling the 
procedurally generated shaders are output to the console as well as the output window in the Visual 
C IDE. If a Material shader fails to compile, notify GarageGames at tsesupport@garagegames.com. 
Make sure to include the Material definition, and follow bug submission best practices. 

Stages
There are many different rendering properties that can be defined in materials and most of them are 
specific to a particular material stage. Each stage is essentially a different pass that is rendered on a 
surface. Stages are indicated by the array index of the material parameter. See the example 
Materials at the end of this chapter. Stages are useful for multi-layer effects. 

For instance, if you wanted a special effect where one layer would scroll in one direction and 
another would scroll on top of it in another direction and they are blended together, stages would be 
the way to do it. 

Another example would be if you wanted the specular component of a material to glow, but not the 
rest of the material, then you could specify a second stage that had specular and glow on it. The 
second stage would then be additively blended on top of the first. 

Rendering Properties

Base Texture
This is the base diffuse texture. 
Script reference: baseTex = filename

Detail Texture
Detail textures are repeating, high frequency textures that are tiled and modulated over a material. 
They can give the impression that the material is of a higher resolution than it actually is. 
Script reference: detailTex = filename

Bumpmap Texture
Bumpmaps give a material a more 3D appearance. The TSE supports bumpmaps through the use of 
normalmaps. There are many free utilities available to create normalmaps. nVIDIA has a nice 
PhotoShop plugin for this purpose available at developer.nvidia.com. 
Script reference: bumpTex = filename

http://tdn.garagegames.com/wiki/TSE/Materials#Sample_Materials
http://developer.nvidia.com/


Environment Map Texture
Not currently supported. See cubemap. 

Specular
This value indicates what color the specular highlights on a material should be. Usually this is the 
same color as the light source that is lighting the material. Specular is additively applied to 
materials, so this value can also be used to control the intensity of the specular highlight. The darker 
the color, the less intense the highlight. 
Script reference: specular = color

Specular Power
This is the "shininess" factor of specular highlights. The higher the number, the smaller the specular 
highlight and the shinier the material appears. 
Script reference: specularPower = float

Pixel and Vertex Specular
These are flags indicating which type of specular, if any, is applied to the material. 

Pixel specular is not supported for cards that do not have pixel shader 2.0 compatibility. It is more 
accurate than vertex specular as it is calculated every pixel, but it is also more expensive. 
Script reference: pixelSpecular = bool

Vertex Specular is not yet supported. 

Glow
Flag indicating if material should glow. Glow amount is dictated by how "bright" a material is in 
color space. White will glow brightest, black will not glow at all. 
Script reference: glow = bool

Emissive
This flag removes any shading calculations performed on a material. It is useful for glowing objects 
that appear to emit light. 
Script reference: emissive = bool

Translucent
Indicates that the material is translucent. 
Script reference: translucent = bool



TranslucentBlendOp
Indicates the blend operation to perform for a translucent stage. Options include additive, 
subtractive, multiplicative, and others. See material.h and the BlendOp enum for a complete list. 
Script reference: translucentBlendOp = blendOp

TranslucentZWrite
Translucent materials do not write to the zbuffer by default. This parameter allows this to occur. 
Script reference: translucentZWrite = bool

Cubemap
Useful for simulating reflective surface properties. Cubemaps are six sided "sky box" structures. 
See the CubemapData and GFXCubemap classes as well as the sample materials.cs file for more 
info. Also see Direct3D and OpenGL documentation. 
Script reference: cubemap = filename

DynamicCubemap
This is a flag indicating that the material is going to use a cubemap created by the scenegraph. 
Dynamic cubemaps are updated frequently for very realistice reflections. They are very expensive 
as a result. 

Dynamic cubemaps only currently work for ShapeBase objects. To enable dynamic cubemapping 
on those objects, the flag dynamicReflection must be set to true for in an object's datablock. The 
dynamic cubemap is then rendered from that object's center every frame. 
Script reference: dynamicCubemap = bool

Planar Reflections
Marks a material for dynamic planar reflections. For more info see Planar 
Reflections (http://www.garagegames.com/docs/tse/general/ch07.php#id2515078). 
Script reference: planarReflection = bool

Animation Flags
The animFlags property determins the combination of animations to perform on that stage. You can 
combine more than one of the animations like so: 
animFlags[0] = $scroll | $rotate | $sequence;

The flags themselves and their individual special parameters are described here below. 

http://www.garagegames.com/docs/tse/general/ch07.php#id2515078
http://www.garagegames.com/docs/tse/general/ch07.php#id2515078


Scroll
Scrolls the material in the direction and speed defined by scrollDir and scrollSpeed parameters in 
script. 
datablock Material(ScrollMat)
{
   baseTex[0] = "demo/data/shapes/spaceOrc/orc_ID1_skin";
   animFlags[0] = $scroll;
   scrollDir[0] = "1 0"; // scroll the texture in the U direction.
   scrollSpeed[0] = 2.0; // that's two texture lengths per second.
};

Rotate
Rotates the material with the rotPivotOffset and rotSpeed parameters indicating the pivot point in 
texture space and the rotation speed respectively. 
datablock Material(ScrollMat)
{
   baseTex[0] = "demo/data/shapes/spaceOrc/orc_ID1_skin";
   animFlags[0] = $rotate;
   rotPivotOffset[0] = "-0.5 -0.5"; // this is the center point UV offset for 

   the rotation.
   rotSpeed[0] = 2.0; // that's two full rotations per second.
};

Wave
This is a modifier flag for the $scroll, $rotate, and $scale properties. It can be controlled with the 
waveType, waveFreq, and waveAmp parameters indicating the type, frequencey and amplitude of 
the wave. An example of it's use is: 
datablock Material(ScrollMat)
{
   baseTex[0] = "demo/data/shapes/spaceOrc/orc_ID1_skin";
   animFlags[0] = $rotate | $wave;
   rotPivotOffset[0] = "-0.5 -0.5";
   rotSpeed[0] = 1.0;
   waveType[0] = $sinWave; // This could also be $triangleWave or $squareWave.
   waveFreq[0] = 0.25; // the time in seconds for the wave to complete one full 

  cycle.
   waveAmp[0] = 1.0; // the 
};

Scale
Scales the material over time and only works with the Wave modifier set. An example of it's use is: 
datablock Material(ScrollMat)
{
   baseTex[0] = "demo/data/shapes/spaceOrc/orc_ID1_skin";
   animFlags[0] = $scale | $wave;
   waveType[0] = $sinWave;
   waveFreq[0] = 0.25;
   waveAmp[0] = 1.0;
};



Sequence
Sequences are a series of images that reside in a single texture. They are arranged in the horizontal 
of a texture and offset at regular intervals. The sequence texture doesn't need to be square, but it 
does need to be a power of two to work.

The sequenceFramePerSec parameter indicates how many sequence segments are displayed in a 
second. The parameter sequenceSegmentSize indicates the size of each segment in a sequence in 
texture space.

For example for a sequence of 4 32x32 images, create a 128x32 size texture. Then create the images 
side by side in the image. To show all four images in one second as a looping animation, set 
sequenceFramePerSec to be 4.0. The sequenceSegmentSize parameter should be set to 0.25 because 
there are 4 segments (1/4 equals 0.25).

An example of it's use is: 
datablock Material(ScrollMat)
{
   baseTex[0] = "demo/data/shapes/spaceOrc/orc_ID1_skin";
   animFlags[0] = $sequence;
   sequenceFramePerSec[0] = 0.25;
   sequenceSegmentSize[0] = 0.25;
};

Mapping Materials to Textures
Materials are mapped on to objects and interiors through the script command 
"addMaterialMapping()". It maps the material name specified in a Material datablock to a texture 
name specified in the relevant art tool. (See materials.cs.) A sample list of mappings can be found in 
example/demo/data/materialMap.cs. If no mapping is specified then the texture will be rendered 
unlit (full ambient). The same material can be mapped to multiple textures. 

Sample Materials
Example 
 datablock Material(OrcSkin)
 {
    baseTex[0]       = "demo/data/shapes/spaceOrc/orc_ID1_skin";
    bumpTex[0]       = "demo/data/shapes/spaceOrc/orc_ID1_skin_bump";
    pixelSpecular[0] = true;
    specular[0]      = "1.0 1.0 1.0 1.0";
    specularPower[0] = 4.0;
 };
           
 datablock Material(GunBlade)
 {
    // STAGE 0
    //----------------------------
    baseTex[0]       = "demo/data/shapes/spaceOrc/gun_ID4_blades";
    bumpTex[0]       = "demo/data/shapes/spaceOrc/gun_ID4_blades_bump";
    
    // STAGE 1 (second rendering pass)
    //----------------------------
    glow[1]          = true;
    emissive[1]      = true;
    pixelSpecular[1] = true;
    specular[1]      = "0.5 0.5 0.5 0.5";
    specularPower[1] = 32.0;



 
    cubemap          = WChrome;
 };

Custom Materials
Materials offer a lot of options for surface properties, but if even more control is desired, 
CustomMaterials can be used. CustomMaterials allow the user to specify their own shaders via the 
ShaderData datablock. 

CustomMaterial Properties 

CustomMaterials are derived from Materials, so they can hold a lot of the same properties, but it is 
up to the user to code how these properties are used. 

texture[x] 
Specifies either a texture filename, or a texture coming from the scenegraph. The "x" is a number 
from 0 to the max number of texture units supported on the hardware the CustomMaterial shader is 
targeting (see the version property description, below). 

There are several textures that can be grabbed from the scenegraph and used in shaders. Here is a 
list: 

$lightmap 

Interior lightmap 

$normmap 

Interior light-normal map (not a bumpmap, but used for bumpmapping) 

$fog 

The fog texture generated by the scenegraph 

$cubemap 

The cubemap specified with the cubemap parameter of the CustomMaterial $dynamicCubemap 

Cubemap passed in from scenegraph 

$backbuff 
A copy of the screenbuffer - useful for refraction effects 

shader 

The shader parameter indicates the pixel and/or vertex shader to be used with the CustomMaterial. 
This parameter expects a ShaderData datablock. See Shaders. 

version 

Each CustomMaterial datablock targets a specific level of pixel shader hardware. The version 
parameter indicates this level. Ie. nVIDIA's Geforce 2 would be 0.0, Geforce 3 and 4ti's would be 
1.1, the Geforce FX cards would be 2.0, and the Geforce 6xxx cards would be 3.0. 

fallback 

High level CustomMaterials (ones targeting 3.0 or 2.0 pixel shader hardware) can specify fallbacks 
for lower levels of hardware. This allows complete control over how a material looks on each 
possible platform. The fallback parameter is simply another CustomMaterial that is targeting a 



lower level hardware. 

When mapping a CustomMaterial to a texture, the highest level CustomMaterial in the fallback 
chain should be specified. That way the TSE can follow the fallback chain down until it reaches a 
material that can be rendered. 

pass 

In addition to targeting a specific level of hardware, each CustomMaterial also targets just a single 
rendering pass. If more passes are desired they can be specified using the pass parameter. It just 
takes another CustomMaterial definition. 

Sample CustomMaterial
Example 
    datablock CustomMaterial( ShinyMetal2_0 )
    {
       texture[0] = "test/metalBump";   // bumpmap texture in texture unit 0
       texture[3] = "$cubemap";         // cubemap texture in texture unit 3
    
       cubemap    = Lobby;
       shader     = BumpCubemap;
       version    = 2.0;
       fallback   = ShinyMetal1;          // specify fallback for 1.1 hardware
       pass[0]    = ShinyMetal2_1;        // specify second pass
    
       specular = "1.0 1.0 1.0 0.0";    // can use the specular parameter from 

 Material
       specularPower = 8.0;
    };        

Material Instances
Materials can be placed on any type of surface in the TGE. Since different types of surfaces have 
different underlying geometry and lighting data, they need to generate different types of shaders 
even though the Material may be the same. The mapping of a material to different types of 
geometry is handled through a material instance (MatInstance). 

MatInstances take information from the Material, the scenegraph, the surface, and the target 
hardware and filter it down into shader passes before sending it off to the shader generation module. 
They also store pointers to the shaders created and use them later when the TSE sets up render 
states for the material. 


	Stages
	Rendering Properties
	Base Texture
	Detail Texture
	Bumpmap Texture
	Environment Map Texture
	Specular
	Specular Power
	Pixel and Vertex Specular
	Glow
	Emissive
	Translucent
	TranslucentBlendOp
	TranslucentZWrite
	Cubemap
	DynamicCubemap
	Planar Reflections
	Animation Flags
	Scroll
	Rotate
	Wave
	Scale
	Sequence

	Mapping Materials to Textures
	Sample Materials
	Custom Materials
	Sample CustomMaterial

	Material Instances

